Comparison of Penalized Cox Regression Methods in Low-Dimensional Data with Few-Events: An Application to Dialysis Patients' Data

Shideh Rafati, Mohammad Reza Baneshi, Laleh Hassani, Abbas Bahrampour


Background: Dialysis is a dominant therapeutic method in patients with chronic renal failure. The ratio of those who experienced the event to the predictor variables is expressed as event per variable (EPV). When EPV is low, one of the common techniques which may help to manage the problem is penalized Cox regression model (PCRM). The aim of this study was to determine the survival of dialysis patients using the PCRM in low-dimensional data with few events.

Study design: A cross-sectional study.

Methods: Information of 252 dialysis patients of Bandar Abbas hospitals, southern Iran, from 2010-16 were used. To deal with few mortality cases in the sample, the PCRM (lasso, ridge and elastic net, adaptive lasso) were applied. Models were compared in terms of calibration and discrimination.

Results: Thirty-five (13.9%) mortality cases were observed. Dialysis data simulations revealed that the lasso had higher prediction accuracy than other models. For one unit of increase in the level of education, the risk of mortality was reduced by 0.32 (HR=0.68). The risk of mortality was 0.26 (HR=1.26) higher for the unemployed than the employed cases. Other significant factors were the duration of each dialysis session, number of dialysis sessions per week and age of dialysis onset (HR=0.93, 0.95 and 1.33).

Conclusion: The performance of penalized models, especially the lasso, was satisfying in low-dimensional data with low EPV based on dialysis data simulation and real data, therefore these models are the good choice for managing of this type of data.


Chronic renal failure; Dialysis; Survival; Cox models

Full Text: PDF

JRHS Office:

School of Public Health, Hamadan University of Medical Sciences, Shaheed Fahmideh Ave. Hamadan, Islamic Republic of Iran

Postal code: 6517838695, PO box: 65175-4171

Tel: +98 81 38380292, Fax: +98 81 38380509